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Abstract We find and discuss the scaling dimensions of the branch 0 manifold of the Nienhuis 
O(n) loop model on the square lattice. concentrating on the surface dimensions, The results 
are extracted from a Bethe ansatz calculation of the finite-size corrections to the eigenspectrum 
of the six-vertex model with free boundary conditions. These results are especially interesting 
for polymer physics at two values of the crossing parameter A. Interacting self-avoiding walks 
on the Manhattan lattice at the wilapse temperature (A = n/3) and Hamiltonian walks on the 
Manhattan lattice (A = n/2) are discussed in detail. Our calculatious illustrate the importance 
of examining both odd and even strip widths when performing finite-size wrrection calculations 
to obtain scaling dimensions. 

1. Introduction 

Recently, work [l] on interacting self-avoiding walks (ISAW) on the Manhattan lattice (see 
figure 1) has given a set of scaling dimensions, except one, in accord with those of Duplantier 
and Saleur [2] for the problem of bulk $-point polymers in two dimensions. This work also 
gave exponents for the surface transitions which are in complete accord with those of 
Vandenande, Seno and Stella [3,4]. These results arise from simulations of kinetic growth 
walks on the Manhattan lattice [l]. There is a configurational mapping from kinetic growth 
walks (MKGW) on the Manhattan lattice to the static ISAW problem on that lattice [5,6]. The 
work in [l] extends Bradley’s mapping [6] to the surface problem and the very existence of 
the mapping determines some of the surface exponents. One can understand heuristically 
why the single scaling dimension is different simply because the Manhattan lattice restricts 
configurations to those that can only trap by loop formation. Otherwise, these results 
demonstrate a $-point model, without the spurious next-nearest neighbour interactions, that 
essentially possesses the same critical behaviour as the Dnplantier-Saleur model. 

It was also pointed out in [l] that an exactly solvable O(n) loop model recently examined 
in [7] has, in the limit n + 0, precisely the same configurations as those of (isolated) closed 
trails on the L-lattice and hence self-avoiding polygons on the Manhattan lattice. This arises 
through a site-to-bond mapping of trails on the square lattice that turn at each vertex (which 
are the configurations of the branch 0 O(n) loop model) to the walks on the Manhattan 
lattice (see figure 2). The relevant bulk scaling dimensions calculated in [7] were those 
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Figure 2. A section of the Manhattan lattice (directed broken lines) covering the L-lattice 
(directed full lines). Each directed bond of the Llattice is mapped (uniquely) to a site of the 
Manhatian lattice. ?he loop model is defined on the Llattice. 

found in [l]. The confirmation of the scaling dimensions in the exactly solvable model was 
through the calculation of finite-size corrections to the eigenspectrum, utilizing the Bethe 
ansatz solution. 

It is then appropriate to perform a similar finite-size correction calculation on the 
loop model with appropriate boundary conditions to give the surface scaling dimensions. 
However, the bulk calculation was completed by applying the Bethe ansatz method directly 
to an equivalent six-vertex model and the equivalence was shown through the use of the 
Temperley-Lieb algebra. In this paper we extend the mapping of the Manhattan collapsing 
pOly”/MKGW to the loop model, and the loop model to the six-vertex model, in the case of 
surfaces. Instead of the algebraic equivalence of the six-vertex model and the loop model 
[7] we demonstrate a configurational equivalence. We then perform the proposed Bethe 
ansatz calculation in a manner that is an extension of [SI and related works. This gives 
us the surface scaling dimensions of the coliapse problem and, indeed, confirms the results 
of [l]. In doing so we make certain observations about the relationship between scaling 
dimensions calculated in one model and another ‘equivalent’ model and about the necessity 
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of carrying out the Bethe ansatz calculation on both odd and even strip widths. We also 
note that in these calculations we make use of an exact configurational mapping between 
the dilute O(n) model and a dense O(n + 1) model. 

The mapping of the Manhattan ISAW problem (at the &point) to the six-vertex model 
OCCIXS for a particular value of the six-vertex 'crossing' parameter A = n/3. On the other 
hand, most of our Bethe ansatz results and related comments are true for general I.. Another 
value of the crossing parameter that is of interest is A = n72. The six-vertex model here 
maps to a dense O(n) loop model with n = 0. This, in turn, can be mapped to the problem 
of Hamiltonian or fully packed walks on the Manhattan lattice. This last problem has 
received extensive treatment [9-111. It is believed to be equivalent to the problem of dense 
polymers and conjectured that the Manhattan lattice constraint is irrelevant. We remark on 
these conjectures in the light of our results and recent work on other fully packed problems. 

The paper is set out as follows. In section 2 we survey the existing results for the 
bulk problem. Section 3 defines the models of interest with free surfaces and describes 
the mapping from the loop model to the six-vertex model. The Bethe ansatz calculation 
of the finitesize corrections to tlie' eigenspect" is sketched. The results of numerical 
diagonalisation of the loop models and a related 15-vertex model are compared to those of 
the six-vertex model. The results of all these calculations and mappings are summarized 
and discussed in the concluding section. 

2. Nienhuis O(n) loop model in the bulk 

The model suggested by Nienhuis 112,131, examined in [13,7] and shown to be equivalent 
[l] to interacting walks on the Manhattan lattice at the &temperature, is a seven-vertex loop 
model on the square lattice derived from the O(n) model. Batchelor 171 has identified a set 
of bulk scaling dimensions x j  of this O(n) model as 

(2.1) 

with j = 1,2, . . . and the central charge as 

These were found from the known six-vertex results extracted via finite-size corrections to 
the eigenspectrum on strips that are an even number of edges wide. These are geometric 
exponents of the O(n) model and relate to the so-called watermelon correlators; the scaling 
dimension x j  describes the decay of the correlation function constructed from 2j  self- 
avoiding paths [14]. 

These values fit into the Kac table as 

xb = 2A(O, j )  I 

where A is given by the Kac formula (for instance see [U]) 

(2.4) 
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with h related to the central charge as 
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6 
h(h + 1) 

2 = 1 -  

and so 

h + 1 = n/h. 

Hence, for n = 0 we have h = 2 and cb = 0 with 

Note that 

x p = i  and x , ” = :  (2.8) 

and since these satisfy x < 2 they are associated with the relevant scaling fields. The Kac 
table is often restricted by assuming ,that h > 3, 0 < p < h and 0 < q < h since the 
associated field theories are unitary. This is not the case here [16] and so the system’s 
scaling dimensions lie outside the normal restrictions. 

For odd strip widths [7] the central charge calculated from the free energy is given as 

and the smallest scaling dimensions are 0 and 1 - h / x .  (The full series is xydd = 
( j z  + j)(a - h)/2n with j = 0,1,. . . .) However, if one is interested in the mappings 
to the Manhattan lattice, odd strip widths are unphysical since they cannot form periodic 
boundary conditions. We come back to this point in the discussion but point out now that 
for open boundaries this restriction does not apply. 

3. Integrable loop models on the square lattice with open boundaries 

Let L be the lattice depicted in figure 3, which we call the square lattice with open 
boundaries. A loop model on L has partition function 

where the sum is over all configurations G of non-intersecting closed loops which cover 
some (or none) of the edges of L. The possible configurations at each vertex are shown in 
figure 4, with the one of type i carrying a Boltzmann weight pi. In the configuration G, mi 
is the number of occurrences of the vertex of type i while P is the total number of closed 
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Figure 3. The lattice L, , 
verlical and horizontal dii respect 
direction and periodic in the vertical. 

N (M = IO an Y = 6 in the figure draw 
ly. Boundary conditions,are open in the h 
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7 S 9 10 11 12 13 

Figure 4. Allowed vertices for the loop model with partition function Z I ~ ~ ~ .  V e x  i carries 
B o l m a n n  weight pt. 

loops of fugacity n.  Much work has been done on models where the boundary weights plo 
to p13 are absent (see e.g. [12,17]). 

Instances where the loop model is integrable are known. Such important cases can 
be related to more well known integrable vertex models via the (loop model)-to-(vertex 
model) mapping [18,12,17]. This involves first assigning orientations to the loops in G. 
The explicit closed loop counting in Z I ~ ~ ~ ,  which is a non-local procedure, can be eliminated 
by introducing a weight s(s-I) for each left (right) turn along an Oriented loop ifs is chosen 
so that 

n = s 4 + s 4 .  (3.2) 

The loop model partition function then becomes equivalent to a (three-state) vertex model 
partition function 

Z,,, = n (Boltzmann weights). (3.3) 
ccnfigs vertices 

The weights for this vertex model are functions of pi ,  s and, in general, gauge factors a, b. c 
and d (the presence of which leave the partition functibn unchanged). The allowed vertex 
states are shown in figures 5 and 6, with the bulk weights being wi and the left and right 
~ b o u n d q  weights w: and wp, respectively. For a dense loop model (where only p8, p ~ .  
plo and p l ~  are non-zero) the relations between the loop weights pi and the vertex weights 
are explicitly given by 

w14 = w1s = PS 
~~ 

w16 = wl7 = p9 



(3.4) 

Integrable vertex models on C can be found via the coordinate Bethe ansatz [8,19] or via 
Sklyanin's extension of the quantum inverse scattering method [2&22]. Given such an 
integrable vertex model, there may or may not be a corresponding loop model [22].  

x x x x x x x  
L 1 3 4 5 6 i 

x x x x x x x  
x x x x x  

8 9 LO II 12 13 14 

I5 I6 17 18 I9 

Figure 5. Allowed bulk vertices for integrable two- and three-state vertex models studied in 
this paper. Vertex i has an associated Bolmann weight wi.  

1 2 3  2 2 1  

Figure 6. Allowed boundary vertices for the vertex models concerned. The left (respectively, 
right) boundary vertices have Boltzmann weights (respectively. w r ) .  

3.1. The dense O(n)  loop model 

For the six-vertex model on 1: solved in [8] there is an associated loop model, the dense 
O(n) model with partition function 

where 

sin(u) 
sin(h -U) P 9 =  . PI0 = PI2 = 1 P8 = 1 



Surface behaviour of Manhattan lattice walks 845 

Figure 7. Allowed vertices for the two-colour loop model. Colours 1 Bnd 2 are indicated by 
fall and broken curves, respectively. The Boltunann weights are, respectively, sin(A - U). sinu 
and 1 for vertices in the three rows. 

and loop fugacity n = 2cosh. The weights for the six-vertex model on L given in [SI can 
be recovered from (3.4) by choosing the gauge factors so that ac  = s-' and bd = s-I (the 
variable t in [8] is t = s2) with s4 = dA. With a different 'gauge choice, where ac = s-l 
and bd = s, the weights can be written as 

w14, w15, w x ,  w17, w18. W19 = (1, 1,x,x,  1 +xe-iA, 1 +xeih) 

wk, w:, wp, w: = (1,1, 1, l )  (3.7) 
wit& x = sin(u)/ sin(h - U). The 'diagonal-to-diagona1' transfer mahix~to(u) for this model 
has eigenvalue [SI 

where u j ( j  = 1, Z,.. . . , m) are roots of the Bethe ansatz equations 

I" sinh[uj + : (U - A)] sinh[uj - ; (U +A)]  

sinh[uj + ; (U + i)] sinhruj - ; ( U  - h)l 

sinh(ua + uj  - in) sinh(un - uj - ih) 1 sinh(ua + uj + ih) sinh(uk - u j  + ih)' ' ' 

m 
- - 

#j 

3.2. The dilute O(n)  loop model 

(3.9) 

There is another loop model connected with the six-vertex model, the so-called dilute (i.e. 
not all edges of L are covered) O(n) model. This model has a partition function Z,l,,. 

equivalent to Zdensc but involves different loop weights. The equivalence can be shown 
[23] by mapping to a two-colour dense loop model [17] with fugacities nl and nz 
such that n, + nz = n. The Boltzmann weights of this two-colour loop model are given 
in figure 7. Setting nz = 1 and summing over the second colour one arrives at Z,],, with 
weights 

PI = l + x ,  
& = p3 = p8 = 1 

P4 = PS = P9 = x 

PI0 = PI1 = PI2 = PI3 = 1. (3.10) 

The Bethe ansatz solution is the same as for the dense model, but the loop fugacity n (in 
the mapping this is nl) is now given by n = 2cosh - 1. . 
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With a suitable gauge choice, this loop model can be mapped onto a three-state vertex 
model with weights: 

W l , W 2 , W 3 ~ W 4 ~ W 5 , W 6 , W l = ( 1 ~ X , 1 , ~ , ~ , ~ , X S 2 ~ X S - 2 )  

~ 8 ,  ~ 9 .  wi4, ~ 1 5 .  ~ 1 6 ,  ~ 1 7 ,  wi8, wig = (xs’, XS-’, 1, I, X ,  X ,  1 + X S - ~ ,  I + X S ~ )  

w4,w2L, Wi, wp, wz”, w: = (1, 1 , L  1.1, 1) (3.11) 

where x = sin(u)/sin(A - U) and s is chosen so that s4 -k s - ~  = 2cosA - 1. The bulk 
weights can be shown to lead to the Temperley-Lieb relations, again with z/iz = 2cosA.. 

We note that for both the dense and dilute loop models there is freedom to multiply the 
. surface weights by an overall factor p,“~at the left boundary and by p,: at the right boundary. 

This introduces the keedom of equivalent surface weights wf and wf in (3.7) and (3.11). 
The overall effect is to introduce a multiplicative factor wkw,: on the right-hand side of the 
eigenvalue expression (3.8). 

3.3. Manhattan walks 

The dilute loop model is easily related to closed L-lattice trails interacting with a surface 
and hence to Manhattan walks near a surface. In the limit n = 0 for the isotropic (U = A/2) 
dilute loop model (A = n/3) one can consider an isolated loop. First we normalize the 
weights so that an empty vertex has weight 1. The configuration of this loop is that of 
a trail on the L-lattice. The vertex weights are p2 = p3 = p4 = p5 = pa = p s  = 1/2 
with arbitrary surface weights depending on our normalization. If instead we associate a 
weight 1/2 with each step of the trail then vertex types 2, 3,4,  and 5 have no extra weight 
while the contact vertex types 8 and 9 have a weight 2. This is then an interacting L- 
lattice trail with step fugacity 1/2 and with specific bulk and arbitrary surface Boltzmann 
weights. The subsequent mapping to the Manhattan walk is described by Bradley [6] and the 
weights thereby obtained are those of a single Manhattan polygon at bulk Boltzmann weight 
wb = a. This is precisely an interacting Manhattan polygon~at the collapse temperature 
[l]. In a similar manner the dense loop model at A = n/2 (that is, n = 0) is related to fully 
packed L-lattice trails and hence Manhattan walks. 

3.4. Numerical transfer matrix calculations 

We have compared the transfer matrix eigenspectra of all four loop and vertex models 
defined above on finite strips of width up to N = 6. For the vertex models, the diagonal-to- 
diagonal transfer matrices are defined as products of transfer matrices Tl(u)T*(u) depicted 
in figure 8. These latter transfer magices are constructed in the usual way, and for the 
six-vertex model with weights (3.7), and the 15vertex model with weights (3.11) are of 
size 2N x 2N and 3N x 3”. respectively, but break up naturally into sectors. 

Figure 8. The transfer matrices 7, and 72 (71 involves only bulk weights), the product of which 
is defined to be the diagonal-to-diagonal transfer mauix for the vertex models. 
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The construction of the diagonal-to-diagonal loop model transfer matrix is more 
involved, and follows similar lines to those in [13] for row-to-row transfer matrices (with 
periodic boundaries). In both cases, the rows and columns of the transfer matrix are indexed 
by connectivities. For a given 'diagonal' i of the lattice C covered by a graph G, the 
connectivity encodes the way in which some (or none) of the edges of i are covered and 
the way in which some (or none) of these covered edges are pairwise connected. Details- 
particularly on the enumerarion of connectivities-can be found in [13]. Each connectivity 
is associated with a number nd, called 'the number of dangling bonds' and defined to be 
the number of edges covered by G but not connected to any other edge. The transfer matrix 
can be broken up into an even nd and an odd n d  sector. Furthermore, within each of these 
sectors the transfer matrix is block upper triangular, reflecting the fact that its application can 
never increase nd.  Just as with the vertex models, the diagonal-to-diagonal transfer matrix 
is naturally constructed as a product f~(u) = F(u)Tz(u) of transfer matrices, with matrix 
elements that can be obtained from the Boltmann weights using a suitable algorithm. 

At the isotropic point of interest ( U  = A/2) we see an exact correspondence between 
the eigenspectra, up to non-zero multiplicities, of all four models at the appropriate value 
of = 2cosA. This gives us confidence that our exact calculations for the six-vertex 
model, for which the solution is at hand, are directly applicable to the related models. 

3.5. Bethe ansatz calculations 

In [SI the Bethe ansatz solution was used to derive the surface free energy and the leading 
finite-size correction to the free energy of the six-vertex model on C for an even number 
of edges in a row. The reduced free energy, f# = -N-' In A,. where A, is the largest 
eigenvalue of the diagonal-to-diagonal transfer matrix tD(u)with N edges in a IOW, scales 
as 

(3.12) 

in agreement with the expectation from conformal invariance [24]. Here fm is the bulk 
free energy, s, is the surface free energy, c is the central charge and 5 = 2 tan(7ru/2h) is 
a geometric factor. The bulk free energy is given by 

sinh(2uy) sinh[(n - h)y] 
2y sinh(ry) cosh(Ay) dy (3.13) 

and the surface free energy was found to be 

sinh(uy) sinh[(n - 2i)y/2] cosh[@ - A)y/2] cosh(Ay/2) 
. .  dy. -21m y sinh(xy) cosh(Ay) 

(3.14) 

We here extend the calculation of [8] in two ways: to any number of edges in a row, and 
to further correction terms which give' the scaling dimensions. Where necessary we refer 
to equations in that paper with their number prefixed by OB. 

Extending the coordinate Bethe ansatz calculation to include an odd number of edges 
is straightforward. The diagonal-to-diagonal transfer matrix breaks up into sectors which 
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are conveniently labelled by the number m of down arrows in a row. The Bethe ansatz 
equations are constructed by an argument which leads from consideration of small values of 
m to the general case. When m = 1, the only equation for the elements of the eigenvectors 
F(G) of TzT,   TIT^) that differs is one of the boundary condition equations. If F ( x )  is the 
element of F for the down arrow in position x ,  and G(x)  is defined similarly, for an odd 
number N of edges 

M T Batchelor et a1 

AF(1)  = wkG(1) and A G ( N )  = w;F(N)  (3.15) 

replaces (OB 2.13). When the 'onebody' wavefunctions (OB 2.15) are substituted into the 
transfer mah-ix equations, the ratio B,(k)/B,(k) obeys the same equations as A, (k ) /A , (K)  
does, and it turns out that this ensures that the adapted boundary condition (3.15) gives rise 
to the same Bethe ansatz equation (OB 2.34). 

In the same way, the eigenvector equations for two (or more down arrows) must be 
adapted from those in [SI if one of the down arrows is at position x = N .  However, 
because the eigenvectors are again built from the one-body wavefunctions, the Bethe ansatz 
equations for the eigenvalues for the case of an odd number of edges are identical to those 
derived in [SI, and given in (3.9), remembering that N may now be interpreted as being 
odd or even. 

The largest eigenvalue of the transfer matrix is found in the ground-state sector. The 
largest eigenvalues in the other sectors A, give further finite-size corrections, which arc 
related to the surface scaling dimensions x' by [15] 

(3.16) 

The calculation of these eigenvalues by the root density method [25] follows a well trodden 
path, and so we simply explain the generalization of certain steps in [SI. 

The equation (OB 3.4) for the root density p ~ ( f 3 )  must be solved. The standard method 
converts this to an integral equation of Wiener-Hopf type. The important point is that the 
condition (OB A3.21) applies only in the sector m = N / 2  when N is even. In general 

1 1 m 
pN(j3)df3 = - 7r - A  + -(1 - 2m)fir - 2h) . 

7r ' [  2N (3.17) 

We then follows the steps in [SI exactly, using the appropriate modification of (OB A3.29), 

(Z - h)(N - 2m + 1) - JC a, = 
[ Z X ( X  - h)]'/2 

(3.18) 

The central charge is then given by 

(3.19) 2 c = 1 - 12a,, 

and the scaling dimensions by 

(3.20) 
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4. Summary of results and discussion 

For the two points of special interest with U = A/2, the bulk (3.13) and surface (3.14) free 
energies reduce to the values 

- f, = In2 s, = l n 2  A = a / 3  

- f, = 2c/n 
(4.1) 

s, = In(l+ Jz, 
where C = 0.915 965.. . is Catalan's constant. The values at A = n/2 are in agreement 
with the well known results for Hamiltonian walks on the Manhattan lattice [9-111, while 
the values at A = n/3 are for the Manhattan ISAW. 

Our results for the central charge and scaling dimensions, from equations (3.19) and 
(3.20). are summarized as follows. For even widths the ground-state sector has equal 
numbers of up and down arrows, So that m = N/2, ahd the central charge is 

A = a p  

cs.e"e" - 6A2 
- I -  

3r(a - A) (4.2) 

and the surface scaling dimensions are 

(4.3) Xs,even j = - [ j ( a  -A)  - A ]  
a I 

where j = N/Z - m and j = I ,  2, . . . . These results coincide with those obtained for the 
U,(su(Z))-invariant spin chain [26]. 

The lowest energy sector for odd strip widths matches as closely as possible the number 
of up and down arrows, so that m = (N - 1)/2 and we have the calculated (sometimes 
called effective) central charge as 

Cs.odd - 6A 37r-4A - -5 + - (-) 
a n - A  (4.4) 

and the scaling dimensions as 

(4.5) .?Odd = -(n i2 - A )  + - ( a  j - 2A) 
a n J 

where j now labels the sectors relative to ( N  - l) /2 and j = 0, 1,. . . . 
This scenario of different central charge and scaling dimensions depending on whether 

one uses odd or even strip widths was remarked upon before for periodic boundary 
conditions (see (2.1), (2.2) and (2.9)). 

It would seem peculiar that different strip widths lead to lattice models that are described 
by different conformal field theories! The explanation is, however, at hand. As for periodic 
boundary conditions with odd ship widths [27], the lowest energy state from which the 
central charge and scaling dimensions are calculated is not the true ground state of the 
system (in the thermodynamic limit) in that it is one of spin 112 rather than the spin 0 it 
should be (and is for even strip widths). This means that the central charge and scaling 
dimensions calculated for odd strip widths need to be adjusted  to^ give the correct results. 
(We note that this procedure is trivial at A = ~ / 3  where all the central charge formulae 
coincide.) 
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The adjusted results for the odd strip widths thanfill in the gaps in the even strip width 
series. This allows one to write down master formulae combining even and odd strip widths. 
The central charge is 

and the surface scaling dimensions are 

k 
4n 

3' k - - [ k ( ~ - A ) - 2 h ]  - 

while for the bulk we have 

b - [  k2(n - A)* - 4h2] 
x k  - S x ( x - h )  

(4.6) 

(4.7) 

(4.8) 

with k = 1,2, . . . for both series. 
We can now compare our A = a/3 results to those found from work on the equivalent 

Manhattan ISAW and KGW models [l]. Here the central charge is i? = 0. Our new results 
(the surface exponents) are in complete agreement with the surface scaling dimension found 
from numerical simulation of kinetic growth walks and related arguments [l]. These are, 
in full, 

k(k - 1) 
6 

x; = - (4.9) 

and the smallest of these are 

XI = O  x ~ = l / 3  x 3 = l  and x 4 = 2  (4.10) 

which are precisely those given in [I]. An intriguing point is that while these scaling 
dimensions were found from one set of boundary conditions they relate to two different 
surface transitions (where the Manhattan walk model has different boundary weights). The 
explanation of this result lies in the fact that by simply changing the arbitrary surface weights 
w," and w,: in the six-vertex model we can map our problem to any surface interaction in the 
Manhattan lattice problem. Hence we must pick up any possible surface scaling dimension. 
The bulk exponents have already been confirmed [l] and the scaling dimensions are those of 
the even strip width calculation only (since, as stated previously, the Manhattan lattice does 
not allow odd strip widths with periodic boundaty conditions). Note here that both the bulk 
thermal and magnetic exponents X, and X, are identified as .rp = 114. We additionally 
note that (4.9) was also found for an O(n) model on the honeycomb lattice [191. 

The other case of interest is A = x / Z  where the six-vertex model can be mapped via 
the dense loop model to the problem of Hamiltonian walks on the Manhattan lattice. Again 
the bulk scaling dimensions are only those of the even strip width calculation and are given 
as 

(4.1 1) 
k 2 -  1 x," - 

4 '  
Making the same bulk identification here as at A = n/3 for consistency's sake we have 
X, = X e  = xp = 0. Hence the exponents U = 1/(2 - X,) = 1/2 and y = (2 - 2X,)u = 1. 
The central charge is 

c = -2. (4.12) 
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These exponents agree with the direct exact results of Kasteleyn [9] and Duplantier and 
David [IO, 111. (Note that there is only one Hamiltonian walk for each rooted Hamiltonian 
polygon on the Manhattan lattice.) 

For the surface case we have, after adjustment, 

k(k - 2)  
x s  - - ‘- 8 

(4.13) 

with the relevant dimensions being 

XI =-1/8 x z = O  x j  =3/8 and xq= 1. (4.14) 

This result was also found for a honeycomb O(n) lattice model [19]. 
These results can also be compared to those of the so-calld,dense walks which have 

some finite density less than unity (not to be confused with the dense loop model which 
is, in fact, fully packed). The dense walk problem has the same central charge (c = -2) 
and all the scaling dimensions listed above. However, it also has another infinite series 
that occurs in the six-vertex model for odd strip widths (after adjustment) with periodic 
boundary conditions. These extra bulk scaling dimensions cannot occur in the Manhattan 
problem because of the non-physical nature of those strip widths. The smallest excluded 
 bulk) scaling dimension is -3/16 which in the dense walk problem leads to y D  = 19/16. 

Just as interesting is a comparison to recently obtained results [28] for Hamiltonian walks 
on the honeycomb lattice which show a central charge of c = -1. This work identified 
the thermal and magnetic scaling dimensions as being the same as those found here for 
the Manhattan problem. This is consistent with the conclusions of Blote and Nienhuis 1291 
who pointed out that the fully packed and dense walk systems are in different universality 
classes. (The fully packed, or Hamiltonian, system is effectively frustrated in some fashion 
and unstable to perturbations.) 

Our conclusions then fall in two categories. One concerns the comments above on the 
process of calculating scaling dimensions from finite-size corrections to the eigenrpecfmm: 
in mapping between these models one does not ‘lose’ any scaling dimensions and one 
must be careful to calculate everything from the true underlying ground state. The second 
category encapsulates the results themselves and their specific values for the two polymer 
physics problems. We have compared (and contrasted) the Hamiltonian walk problem on the 
Manhattan lattice with dense walks and Hamiltonian walks on other lattices. Importantly, 
we have confirmed all the surface exponents found from kinetic growth simulations by 
mapping the seven-vertex Nienhuis loop model on the square lattice to interacting self- 
avoiding walks on the Manhattan lattice and subsequent exact calculation on the equivalent 
six-vertex model. 
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